Light is one of the oldest physical agents known to man!
Its origin can be traced to the Greeks whose physicians frequently prescribed a form of light treatment called heliotherapy.
Light is one of the oldest physical agents known to man. Its origin can be traced to the Greeks whose physicians frequently prescribed a form of light treatment called heliotherapy.
We are excited to introduce this state of the art therapy to assist you on their journey to health. Living Well Dallas Chiropractic now offers low level laser therapy (also known as cold laser therapy) utilizing the MR4 ACTIVE by Multi Radiance Medical. Cold Laser Therapy promotes cellular activity, including but not limited to: enzyme and collagen production; increased ATP production; and mitochondrial activity. This increased cellular production improves the rate of healing while also easing pain and creating lasting changes within the body. The increased collagen production also decreases scar tissue. This process is similar to photosyntheses but you are the plant and the laser is the sun. The body absorbs the light and uses it to activate cellular activity for repair and healing on a cellular level. Therapeutically Low Level Laser Therapy has been shown to decrease pain, increase circulation of blood and lymph, and speed up growth and repair mechanisms in the body. REMEMBER TO PRINT YOUR GIFT CERTIFICATE (below)
|
Benefits of Laser Therapy
![]()
|
FAQ's
What is laser treatment?
L.A.S.E.R. (Light Amplification by Stimulated Emission of Radiation) is a name for a type of intense radiation of the light spectrum. A laser is a beam of light in which high energies can be concentrated. Laser light has unique physical properties, which other types of light do not have. These are coherence and monochromaticity. These are what makes laser light is so effective compared to other kinds of light in the field of pain reduction and healing. Laser treatment (also known as phototherapy and low level laser therapy) involves the application of low power coherent light to injuries and lesions to stimulate healing and reduce pain. It is used to increase the speed, quality and strength of tissue repair, resolve inflammation and give pain relief. Low level laser technology has been found to offer superior healing and pain relieving effects compared to other electrotherapeutic modalities such as ultrasound, especially in dealing with chronic problems and in the early stages of acute injuries. Low level laser technology is a complete system of treating muscle, tendon, ligament, connective tissue, bone, nerve, and dermal tissues in a non-invasive, drug-free modality.
How does it work?
The effects of low level laser treatments are photochemical. Photons enter the tissue and are absorbed in the cell’s mitochondria and at the cell membrane by chromophores. These chromophores are photosensitizers that generate reactive oxygen species following irradiation thereby influencing cellular redox states and the mitochondrial respiratory chain. Within the mitochondria, the photonic energy is converted to electromagnetic energy in the form of molecular bonds in ATP (Adenosine Triphosphate). In order to interact with the living cell, laser light has to be absorbed by intracellular chromophores. Cell membrane permeability increases, which causes physiological changes to occur. These physiological changes affect macrophages, fibroblasts, endothelial cells, mast cells, bradykinin and nerve conduction rates. The clinical and physiological effects are obtained by the way in which tissues absorb laser radiation. This tissue absorption depends on the wavelength of the beam itself and the power to ensure that the laser energy reaches the target tissue at the necessary clinical levels. The improper wavelength of laser light would not penetrate into the tissue to reach the target area. Furthermore, even if one has a laser with the proper wavelength, if the device does not have enough power to drive the energy into the tissue, the target area may not realize the potential benefits. Each type of laser emits light at a very specific wavelength which interacts with the irradiated tissue. It also acts in particular with the chromophores present in the tissue, but in a different way. A chromophore, intrinsic or extrinsic, is any substance, colored or clear, which is able to absorb radiation. Among the endogenous chromophores are water and hemoglobin, nucleic acid and proteins. Among the exogenic chromophores are porphyrins and hematoporphyrins, which are injected into the organism. These are described as photosensitizers because they fix themselves to the tissue making it photosensitive at specific wavelengths.
Lasers vs. LED.
Light emitting diodes (LED) are tiny light bulbs that fit easily into an electrical circuit. But unlike ordinary incandescent bulbs, they do not have a filament that will burn out. They are illuminated solely by the movement of electrons in a semiconductor material. LED’s produce incoherent light just like an ordinary light bulb. Light from LED’s have very little tissue penetration compared to laser light. By applying the first law of photochemistry (Grotthus-Draper Law) which states that light must be absorbed by a molecule before photochemistry can occur, one can immediately conclude that light from LED’s will work only on skin level conditions. For conditions deeper than skin layers, one must choose laser.
Pulsed vs. continuous wave lasers
In general, laser diodes are either continuous wave or pulsed. The continuous wave (CW) diodes emit laser energy continuously, hence its name. Pulsed diodes emit a radiation impulse with a high amplitude (intensity) and duration which is typically extremely short: 100-200 nanoseconds. Continuous wave lasers produce a fixed level of power during emission. Although lacking the high peak power of a "true" or "super" pulsed laser, most continuous wave lasers can be made to flash a number of times per second to simulate pulse-like rhythms by interrupting the flow of light rapidly as in turning a light switch “off” and “on”. “True” or “super” pulsed lasers, as the name implies, produce a brief high power level light impulse. It is the high power level achieved during each pulse that drives the light energy to the target tissue. Even though the pulse peaks at a high power level there are no deleterious thermal effects in the tissue because the pulses are of such short duration. Therefore, the peak power of a “true” or “super” pulsed laser is quite high compared to its average pulse power. By using “true” or “super” pulsed lasers, one is able to more effectively drive light energy into tissue. The laser and electronic technologies required to use pulsed diodes are more advanced and the diodes themselves are more expensive than the continuous wave diodes. This is why over 90% of the therapeutic lasers in the North American market are low power continuous wave lasers. Some of these lasers provide power literally at the same level as an inexpensive laser pointer costing around $30.
Are laser treatments safe?
Yes. Laser treatments are drug-free and non-invasive. However, since lasers produce a high intensity light, one should never shine the laser directly into the eye. Furthermore, it is recommended that the laser device not be used directly on any neoplasmic tissue. Pregnant women should refrain from laser treatments applied directly to the abdomen. Also people with pacemakers should not use laser treatments near the heart.
Is low level laser technology scientifically well documented?
There are more than 120 double-blind positive studies confirming the clinical effects of laser technology. More than 300 research reports have been published. There are over 300 dental studies alone. More than 90% of these studies verify the clinical value of using laser technology. A review of negative results shows that low dosage was the single most significant factor. By dosage is meant the light energy delivered to a given unit area during treatment. The energy is measured in joules and the area in cm2. Assuming that the power of the laser remains constant during the treatment, the energy of the light will be equal to the power in watts multiplied by the time in seconds during which the light is emitted. Therefore, a laser with more power (watts) can deliver the same amount of energy (joules) in less time. A pulsed laser with more average power (watts) can deliver the same amount of energy (joules) in less time and at deeper target tissues than a continuous wave laser.
What is pulsed electromagnetic therapy?
Magnetic fields play a key role in biological life. A magnetic field is created when a conductor is crossed by an electrical current. Magnetic fields arranged around single conductors are summed in a coil producing a density of magnetic force lines. If current produced in this way flows in pulses, then a pulsed magnetic field is created. In the bioenergetic and chemical terms of an organism, the essential concept of magnetism is not the magnetic load, but the energy-rich dipole which is surrounded by a magnetic field and whose transformation and exploitation for the production of energy in the organism is highly significant. The most important effect from pulsed electromagnetic fields (EMF) therapy is found on the cellular transmembrane potential (TMP). It is known that damaged or diseased cells present an abnormally low TMP, up to 80% lower than healthy cells. This signifies a reduced metabolism, impairment of the electrogenic sodium-potassium (Na-K) pump activity, and therefore, reduced ATP production. In a nutshell, the TMP is proportional to the activity of the Na-K pump and thus to the rate of healing. Healthy cells have TMP voltages of 70 to 100 millivolts. Due to constant stresses of modern life and a toxic environment, cell voltages tend to drop as we age or due to illness. As the voltage drops, the cell is unable to maintain a healthy environment for itself. If the electrical charge of a cell drops to 50, the patient may experience chronic fatigue. Electromagnetic therapy with the Maxi provides one effective way to affect healing rates by increasing cellular TMP.
Does low level laser technology cause heat damage or cancer in the tissue?
Absolutely not. The average power and the type of light source (non-ionizing) laser devices use do not permit heat-damage or carcinogenic (cancer-causing) effects. Due to increased blood circulation there is sometimes a very minimal sensation of warmth locally.
Trends in laser technology.
Therapeutic lasers are getting better every year. New lasers have entered the North American market that provide deeper tissue penetration, higher power densities and reliable electronics to achieve better clinical outcomes. The trend has been to increase power density and dose, since these have been shown to produce better clinical outcomes. In the case of superficial target tissues, clinicians have several laser options to consider. Underpowered lasers currently available in North America do not deliver the needed light energy to treat tissues beyond a few centimeters.
L.A.S.E.R. (Light Amplification by Stimulated Emission of Radiation) is a name for a type of intense radiation of the light spectrum. A laser is a beam of light in which high energies can be concentrated. Laser light has unique physical properties, which other types of light do not have. These are coherence and monochromaticity. These are what makes laser light is so effective compared to other kinds of light in the field of pain reduction and healing. Laser treatment (also known as phototherapy and low level laser therapy) involves the application of low power coherent light to injuries and lesions to stimulate healing and reduce pain. It is used to increase the speed, quality and strength of tissue repair, resolve inflammation and give pain relief. Low level laser technology has been found to offer superior healing and pain relieving effects compared to other electrotherapeutic modalities such as ultrasound, especially in dealing with chronic problems and in the early stages of acute injuries. Low level laser technology is a complete system of treating muscle, tendon, ligament, connective tissue, bone, nerve, and dermal tissues in a non-invasive, drug-free modality.
How does it work?
The effects of low level laser treatments are photochemical. Photons enter the tissue and are absorbed in the cell’s mitochondria and at the cell membrane by chromophores. These chromophores are photosensitizers that generate reactive oxygen species following irradiation thereby influencing cellular redox states and the mitochondrial respiratory chain. Within the mitochondria, the photonic energy is converted to electromagnetic energy in the form of molecular bonds in ATP (Adenosine Triphosphate). In order to interact with the living cell, laser light has to be absorbed by intracellular chromophores. Cell membrane permeability increases, which causes physiological changes to occur. These physiological changes affect macrophages, fibroblasts, endothelial cells, mast cells, bradykinin and nerve conduction rates. The clinical and physiological effects are obtained by the way in which tissues absorb laser radiation. This tissue absorption depends on the wavelength of the beam itself and the power to ensure that the laser energy reaches the target tissue at the necessary clinical levels. The improper wavelength of laser light would not penetrate into the tissue to reach the target area. Furthermore, even if one has a laser with the proper wavelength, if the device does not have enough power to drive the energy into the tissue, the target area may not realize the potential benefits. Each type of laser emits light at a very specific wavelength which interacts with the irradiated tissue. It also acts in particular with the chromophores present in the tissue, but in a different way. A chromophore, intrinsic or extrinsic, is any substance, colored or clear, which is able to absorb radiation. Among the endogenous chromophores are water and hemoglobin, nucleic acid and proteins. Among the exogenic chromophores are porphyrins and hematoporphyrins, which are injected into the organism. These are described as photosensitizers because they fix themselves to the tissue making it photosensitive at specific wavelengths.
Lasers vs. LED.
Light emitting diodes (LED) are tiny light bulbs that fit easily into an electrical circuit. But unlike ordinary incandescent bulbs, they do not have a filament that will burn out. They are illuminated solely by the movement of electrons in a semiconductor material. LED’s produce incoherent light just like an ordinary light bulb. Light from LED’s have very little tissue penetration compared to laser light. By applying the first law of photochemistry (Grotthus-Draper Law) which states that light must be absorbed by a molecule before photochemistry can occur, one can immediately conclude that light from LED’s will work only on skin level conditions. For conditions deeper than skin layers, one must choose laser.
Pulsed vs. continuous wave lasers
In general, laser diodes are either continuous wave or pulsed. The continuous wave (CW) diodes emit laser energy continuously, hence its name. Pulsed diodes emit a radiation impulse with a high amplitude (intensity) and duration which is typically extremely short: 100-200 nanoseconds. Continuous wave lasers produce a fixed level of power during emission. Although lacking the high peak power of a "true" or "super" pulsed laser, most continuous wave lasers can be made to flash a number of times per second to simulate pulse-like rhythms by interrupting the flow of light rapidly as in turning a light switch “off” and “on”. “True” or “super” pulsed lasers, as the name implies, produce a brief high power level light impulse. It is the high power level achieved during each pulse that drives the light energy to the target tissue. Even though the pulse peaks at a high power level there are no deleterious thermal effects in the tissue because the pulses are of such short duration. Therefore, the peak power of a “true” or “super” pulsed laser is quite high compared to its average pulse power. By using “true” or “super” pulsed lasers, one is able to more effectively drive light energy into tissue. The laser and electronic technologies required to use pulsed diodes are more advanced and the diodes themselves are more expensive than the continuous wave diodes. This is why over 90% of the therapeutic lasers in the North American market are low power continuous wave lasers. Some of these lasers provide power literally at the same level as an inexpensive laser pointer costing around $30.
Are laser treatments safe?
Yes. Laser treatments are drug-free and non-invasive. However, since lasers produce a high intensity light, one should never shine the laser directly into the eye. Furthermore, it is recommended that the laser device not be used directly on any neoplasmic tissue. Pregnant women should refrain from laser treatments applied directly to the abdomen. Also people with pacemakers should not use laser treatments near the heart.
Is low level laser technology scientifically well documented?
There are more than 120 double-blind positive studies confirming the clinical effects of laser technology. More than 300 research reports have been published. There are over 300 dental studies alone. More than 90% of these studies verify the clinical value of using laser technology. A review of negative results shows that low dosage was the single most significant factor. By dosage is meant the light energy delivered to a given unit area during treatment. The energy is measured in joules and the area in cm2. Assuming that the power of the laser remains constant during the treatment, the energy of the light will be equal to the power in watts multiplied by the time in seconds during which the light is emitted. Therefore, a laser with more power (watts) can deliver the same amount of energy (joules) in less time. A pulsed laser with more average power (watts) can deliver the same amount of energy (joules) in less time and at deeper target tissues than a continuous wave laser.
What is pulsed electromagnetic therapy?
Magnetic fields play a key role in biological life. A magnetic field is created when a conductor is crossed by an electrical current. Magnetic fields arranged around single conductors are summed in a coil producing a density of magnetic force lines. If current produced in this way flows in pulses, then a pulsed magnetic field is created. In the bioenergetic and chemical terms of an organism, the essential concept of magnetism is not the magnetic load, but the energy-rich dipole which is surrounded by a magnetic field and whose transformation and exploitation for the production of energy in the organism is highly significant. The most important effect from pulsed electromagnetic fields (EMF) therapy is found on the cellular transmembrane potential (TMP). It is known that damaged or diseased cells present an abnormally low TMP, up to 80% lower than healthy cells. This signifies a reduced metabolism, impairment of the electrogenic sodium-potassium (Na-K) pump activity, and therefore, reduced ATP production. In a nutshell, the TMP is proportional to the activity of the Na-K pump and thus to the rate of healing. Healthy cells have TMP voltages of 70 to 100 millivolts. Due to constant stresses of modern life and a toxic environment, cell voltages tend to drop as we age or due to illness. As the voltage drops, the cell is unable to maintain a healthy environment for itself. If the electrical charge of a cell drops to 50, the patient may experience chronic fatigue. Electromagnetic therapy with the Maxi provides one effective way to affect healing rates by increasing cellular TMP.
Does low level laser technology cause heat damage or cancer in the tissue?
Absolutely not. The average power and the type of light source (non-ionizing) laser devices use do not permit heat-damage or carcinogenic (cancer-causing) effects. Due to increased blood circulation there is sometimes a very minimal sensation of warmth locally.
Trends in laser technology.
Therapeutic lasers are getting better every year. New lasers have entered the North American market that provide deeper tissue penetration, higher power densities and reliable electronics to achieve better clinical outcomes. The trend has been to increase power density and dose, since these have been shown to produce better clinical outcomes. In the case of superficial target tissues, clinicians have several laser options to consider. Underpowered lasers currently available in North America do not deliver the needed light energy to treat tissues beyond a few centimeters.